Higgs and Supersymmetry Orsay, 19-23 march, 2001 ## **Charged Higgs at LHC** R. Kinnunen **Helsinki Institute of Physics** ### How to look for H[±] at LHC - i) if $m_{H^+} < m_{top}$ use $t\bar{t}$ production with $t \rightarrow bH^{\pm}$, $H^{\pm} \rightarrow \tau v$ (cs) - ii) if $m_{H+} > m_{top}$ (more interesting) production studied in detail up to now: gg -> $$tbH^+$$ followed by H^+ -> τv or H^+ -> tb largest reach obtained in $H^+ \rightarrow \tau \nu$, $\tau \rightarrow$ hadronic decay (" τ -jet") In some cases (γγ, bb) the neutral Higgs bosons may be hard to distinguish from the Standard Model Higgs at LHC → Observation of a charged Higgs would clearly signal that there is physics beyond SM (SUSY) ### H^+ production in gb -> tH^{\pm} and gg -> tbH^{\pm} Good agreement between PYTHIA and theory for $m_{H\pm} \gtrsim 300 \text{ GeV}$ #### Branching ratios for H⁺, HDECAY #### no stop mixing #### **Branching ratios, H**⁺ Example with large stop mixing and light stop: A_t = 1400 GeV, m_{stop} = 200 GeV Appearence of sparticle decay modes ### $H^{\pm} \rightarrow \tau v$ in tbH^{\pm} production - Signal and backgrounds generated with PYTHIA - + TAUOLA to account for τ-spin correlations - Main backgrounds considered: #### **Detector response simulation:** - i) b-tagging aspects studied in detail with CMSIM and parametrized for fast simulation - ii) fast CMS detector simulation (CMSJET) It turns out that H^{\pm} -> $\tau \nu$ with τ -> π^{\pm} + ν is the most promising channel thanks to the spin correlations in this mode as pointed out to us by D.P. Roy ### τ polarization in H⁺ -> τV Spin correlations in $\tau^+ \to \pi^+ \nu$ from $H^+ \to \tau^+ \nu$ and $W^+ \to \tau^+ \nu$: $H^+ \to \tau^+ \nu$ leads to harder pions from $\tau^+ \to \pi^+ \nu$ and from the longidutinal components of ρ and a_1 than the corresponding decays in $W^+ \to \tau^+ \nu$ Main contributions to 1-prong τ decays: $$\tau^{+} \rightarrow \pi^{+} \nu$$ 12.5% $\tau^{+} \rightarrow \rho^{+} \nu \rightarrow \pi^{+} \pi^{0} \nu$ 26% $\tau^{+} \rightarrow a_{1} \nu \rightarrow \pi^{+} \pi^{0} \pi^{0} \nu$ 7.5% ### Fraction of τ -jet energy carried by a single pion # τ decay with TAUOLA, all hadronic τ decay channels included Reconstructed τ -jets, E_t^{τ -jet} > 100 GeV #### Large background reduction is obtained with the τ selection: | Selection efficiency for | H^+ (200,15) | $H^+(400,23)$ | tt | |--------------------------------------|----------------|---------------|------| | $E_t^{\tau - jet} > 100 \text{ GeV}$ | 28.1% | 65.4% | 8.2% | | $p^{hadron}/E^{\tau-jet} > 0.8$ | 26.4% | 27.4% | 5.2% | | Total τ selection | 7.4% | 17.9% | 0.4% | ### Event selection for tbH^+ , $H^+ \rightarrow \tau \nu$, $\tau \rightarrow hadron + X$, $t \rightarrow jets$ | τ selection: | jet, $E_t > 100$ GeV, $ \eta < 2.5$ containing one track with $r = p^h/E^{jet} > 0.8$, $\Delta R(jet,track) < 0.1$ | |--------------------------------|---| | Missing E _t cut: | $E_t^{\text{miss}} > 100 \text{ GeV}$ | | W and top mass reconstruction: | in addition 3 jets (excluding τ -jet) with $E_t > 20$ GeV minimization of $\chi = (m_{jj}$ - m_W) $^2 + (m_{jjj}$ - m_{top}) 2 m_{jj} - m_W < 20 GeV, 110 GeV < m_{jjj} < 220 GeV | | B-tagging: | jet not assigned to W is b-jet canditate: $E_t > 30$ GeV, efficiency of 50% for b-jets, 1.3 % for non-b-jets assumed | | Selection furthe | r improved by: | | Second top veto: | $m(\tau\text{-jet}, E_t^{\text{miss}}, \text{jet}) > 300 \text{ GeV}$ | | $\Delta \phi$ -cut | $\Delta \phi(\tau\text{-jet}, E_t^{\text{miss}}) > 60^0$ | # $\Delta \phi(\tau$ -jet, $\mathbf{E_t}^{\mathbf{miss}})$ 10⁴pb⁻¹ with a pileup of 2 min. bias events superimposed Small opening angle for $t\bar{t}$ background due to hard E_t cuts and hadronic decay of the associated top For $\Delta\phi(\tau\text{-jet,}E_t^{\text{miss}}) > 60^{\circ}$ almost background-free signal can be obtained ### **Reconstructed τ-jet** ### Top and W mass Reconstructed minimizing $(m_{jjj} - m_{top})^2 + (m_{jj} - m_W)^2$ pileup of 2 minimum bias events superimposed ### Efficiency for selection cuts, signal and backgrounds, $10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$ | m_{H+} , $taneta$ | (200,15) | (400,23) | tŧ | Wtb | W+jet | |--|------------------------|-------------------------|----------------------|----------------------|-----------------------| | $E_t > 100 \text{ GeV}$ $p^h / E^{jet} > 0.8$ $total \ \tau \text{ selection}$ | 28.1%
26.4%
7.4% | 65.4%
27.4%
17.9% | 8.2%
5.2%
0.4% | 3.9%
5.9%
0.2% | 3.7%
9.6%
0.36% | | $E_t^{\text{miss}} > 100 \text{ GeV}$ | 28.7% | 74.7% | 37.6% | 28.4% | 42.1% | | W and top mass reconstruction: | 42.7% | 38.9% | 46.1% | 30.9% | 6.5% | | B-tagging | 50% | 50% | 50% | 50% | 1.3% | | Second top veto | 87.7% | 95.6% | 47.0% | 77.5% | 75.3% | | $\Delta \phi(\tau\text{-jet,}E_t^{\text{miss}}) > 60^{\circ}$ | 53.2% | 90.3% | - | - | - | ### Signal superimposed on the total background, 3*10⁴pb⁻¹ #### with basic selection cuts, $m_A = 400 \text{ GeV}$ ### Signal superimposed on the total background, 3*10⁴pb⁻¹ ### with selection cuts for $m_A = 200 \text{ GeV}$ ### Events for signal and backgrounds for 3*10⁴pb⁻¹ with selection cuts | | $m_T^{\tau V} > 100 \text{ GeV}$ | $m_T^{\tau V} > 100 \text{ GeV}$
$m_{top2} > 300 \text{ GeV}$ | $\Delta \phi(\tau$ -jet, $E_t^{miss}) > 60^{o}$ | |--|----------------------------------|--|---| | Signal, $m_A = 200$ GeV, $tan\beta = 15$ | 17.0 | 13.1 | 12.5 | | Signal, $m_A = 400$ GeV, $tan\beta = 23$ | 10.7 | 9.6 | 10.2 | | Signal, $m_A = 600$ GeV, $tan\beta = 40$ | 11.0 | 10.2 | 10.6 | | tť | 2.4 | 2.4 | < 0.8 | | W+jet | < 0.6 | < 0.6 | < 0.6 | | Wtb | < 0.2 | < 0.2 | < 0.2 | | Total background | 2.4 | 2.4 | < 1 | ### H^+ mass determination from $m_T(\tau$ -jet, E_t^{miss}) A 4-parameter fit of the form: $$\frac{dN}{dm_T} \sim \int \!\!\!\!\! D(z) \, dz \, / \, \sqrt{M_{fit}^2 - m_T^2}$$ with $D(z) \sim z^\alpha \, (1-z)^\beta, \ z = p_t^{\tau - jet} / p_t^{\tau}$ $$M_{fit} = 300.8 + 1.2 \text{ GeV}$$ $M_{fit} = 301.2 + 4.0 \text{ GeV}$ ### H^+ mass determination as a function of tan β in tbH^+ , $H^+ \rightarrow \tau V$ Systematic errors from energy scale for jets and $E_t^{\ miss}$ measurement W -> τv may be used to determine the mass scale of $m_T(\tau\text{-jet}, E_t^{\text{miss}})$ measurement ### 50 significance contours for SUSY Higgses #### **ATLAS** Potential for H^{\pm} #### Relevant channels for ATLAS: $$H^{\pm} \rightarrow \tau \nu$$ $$\rightarrow tb, t^*b$$ $$\rightarrow Wh, W^*h$$ Production: $m_{H^{\pm}} < m_t$ $$\begin{array}{ccc} pp & \longrightarrow & t\bar{t} \\ t & \longrightarrow & H^{\pm}b \\ \bar{t} & \longrightarrow & Wb \end{array}$$ Production: $m_{H^{\pm}} > m_t$ $$\begin{array}{ccc} gb & \longrightarrow & tH^{\pm} \\ gg/qq' & \longrightarrow & tH^{\pm}b \end{array}$$ With $t \longrightarrow Wb$. For final states up to 3 b-tags, both processes contribute. $$pp \to tH^{\pm}, \ t \to jjb, \ H^{\pm} \to \tau\nu_{\tau} \left(m_{H^{\pm}} > m_{t}\right)$$ Thus requires a multi-jet trigger and a τ -trigger! Also good τ identification efficiency and jet rejection - Signal, $H^{\pm} \to \tau^+ \nu$: $\tan \beta = 40$, $m_{H^{\pm}} = 250$ GeV, $\sigma \times \text{BR} = 0.91$ pb. - Backgrounds: - $$pp \to t\bar{t} \to WbWb$$, $\sigma \times {\rm BR} = 84~{\rm pb}$ - $pp \to W + {\rm jets}$, $\sigma \times {\rm BR} = 1.64~10^4~{\rm pb}$ with one $W \to \tau \nu$ and the other $W \to jj$ • Take advantage of differences in τ polarizations: For 1-prong decays, $$\stackrel{\stackrel{}{\smile}}{\longrightarrow} \stackrel{\stackrel{}{\leftarrow}}{\longleftarrow} \stackrel{\stackrel{}{\leftarrow}}{\longrightarrow} \stackrel{\stackrel{}{\smile}}{\longrightarrow} \stackrel{\stackrel{}{\smile}}{\longrightarrow} \stackrel{\stackrel{}{\leftarrow}}{\longrightarrow} \stackrel{\stackrel{}{\rightarrow}}{\longrightarrow} \stackrel{}$$ Harder π from $\tau \to \pi \nu$ and longitudinal ρ and a_1 in H^+ than W^+ Use inclusive τ decays (not just 1-prong) but with τ -polarization ### $pp \to tH^{\pm}, \ t \to jjb, \ H^{\pm} \to \tau\nu_{\tau} \left(m_{H^{\pm}} > m_{t}\right)$ Take advantage of differences in kinematics Reconstruct the transverse mass • Channel almost background free. Discovery limited by signal size itself. Reach extended to \sim 700 GeV, $\tan\beta>10!$ $$t \to bH^{\pm} \to b\tau^{\pm}\nu \ (m_{H^{\pm}} < m_t)$$ Signal: $$pp \rightarrow t\bar{t}$$ $t \rightarrow bH^{\pm} \rightarrow b\tau^{\pm}\nu_{\tau} \rightarrow b$ hadrons ν_{τ} $\bar{t} \rightarrow bW^{\pm}(H^{\pm}) \rightarrow bl^{\pm}\nu_{l}(l^{\pm}\nu_{l}\nu_{\tau})$ - Backgrounds: $pp \to t\bar{t}$, $W + {\rm jets}$, $b\bar{b}$ - Search for 1 hadronic τ , 1 isolated lepton, \geq 3 jets (with 2 b-tagged) - $m_{H^{\pm}}$ cannot be reconstructed. Signal appears as an excess of au leptons - $\tan \beta = 5$ and $m_{H^\pm} = 130$ GeV, $\sigma \times \text{BR} = 13.1$ pb $\sim 1200~\tau$ from H^\pm $\sim 2500~\tau$ from W^\pm ~ 3400 fake τ 's Significance = 6.6 (3% systematics on fake τ efficiency) - Discovery possible for $m_{H^\pm} < m_t 20$ GeV over most of the $\tan\beta$ range. $$pp \to tH^{\pm} \ (m_{H^{\pm}} > m_t)$$ $$H^{\pm} ightarrow ar{t}b$$, $t ightarrow Wb ightarrow l u_l b$ and $ar{t} ightarrow Wb ightarrow jjb$ - Signal: $\tan\beta=30$, $m_{H^\pm}=250$ GeV, $\sigma \times {\rm BR}=1.2$ pb. - Background: $pp \rightarrow t\bar{t}b$, $\sigma \times \mathrm{BR} = 228~\mathrm{pb}$ - 11, 3 b-tagged jets and at least 2 non b-jets - $W \to l \nu$ and $W \to j j$ - ullet $t_1 ightarrow l u b_1$ and $t_2 ightarrow j j b_2$ inside mass window - Reconstruct m_{t_1b} and m_{t_2b} $$\mathcal{L}=30~\mathrm{fb^{-1}}$$, $\tan\beta=30$ and $m_{H^\pm}=250~\mathrm{GeV}$: - Signal = 336 events in $m_{H^\pm} \pm 2 \times 37 \; {\rm GeV}$ - S/B = 0.21 - $S/\sqrt{B} = 8.4$ Discovery possible up to 400 GeV ($\tan \beta > 15$) ### ATLAS discovery Potential for H^{\pm} Discovery relies on: $H^\pm \to au u$ and on $H^\pm \to tb$ ### **Charged Higgs via s-channel production in CMS** **Production through:** $q\overline{q}' \rightarrow H^+ \rightarrow \tau V$ - Cross sections for signal and backgrounds LO + NLO calculation including 2 -> 2 and 2 -> 3 processes **PYTHIA** for fragmentation **TAUOLA** for τ polarization **CMSJET** for detector simulation charged Higgs can be produced in s-channel process due to light quarks interaction $$qq' \to H^{\pm}, \quad q(q') = d, u, s, c, b$$ • $H^{\pm} \to au u_{ au}$ channel ullet au polarisation for any aneta au-lepton from H^\pm decay has polarisation opposite to SM case $$\mathcal{L}_{SM} \propto \bar{\nu} \ (P_R \gamma^{\alpha} P_L) \tau \quad \mathcal{L}_H \propto \bar{\nu} \ P_R \tau$$ SM $$\tau_L(\leftarrow)$$ \Rightarrow $\nu_L(\leftarrow)\pi$ \Rightarrow $p_{\pi} \ll p_{\tau}, p_{\nu} \sim p_{\tau}$ H $\tau_R(\rightarrow)$ \Rightarrow $\nu_L(\leftarrow)\pi$ \Rightarrow $p_{\pi} \sim p_{\tau}, p_{\nu} \ll p_{\tau}$ • uncertainty in the cross section s-channel production cross section, $q\bar{q}'\to H^\pm$, has large uncertainty due to masses of light quarks $$\sigma(\bar{q}' \to H^{\pm}) \propto (m_u^2 \cot^2 \beta + m_d^2 \tan^2 \beta)$$ for $$M_H=300$$ GeV and $\tan\beta=30$ $$m_d=m_u=300 \text{ MeV} \quad \sigma(H^\pm\to \tau\nu)\approx 1.6 \text{ pb}$$ $$m_d=9$$, $m_u=5~{\rm MeV}~~\sigma(H^\pm o au u)pprox 0.07~{\rm pb}$ ullet we use RPP values for m_q $$m_d = 9 \; { m MeV} \hspace{0.5cm} m_s = 150 \; { m MeV} \hspace{0.5cm} m_b = 4.8 \; { m GeV}$$ $m_u = 5 \; { m MeV} \hspace{0.5cm} m_c = 1.25 \; { m GeV}$ $$M_H = 200 \text{ GeV} \text{ and } \tan \beta = 30, \quad 60$$ | $\tan eta$ | 1 | 10 | 30 | 50 | |----------------|--------------------|-------|------|-----| | Γ , GeV | 2.83 | 0.26 | 2.3 | 6.6 | | Br, % | 0.015 | 16 | 16 | 16 | | σ , pb | 3×10^{-5} | 0.078 | 0.85 | 2.1 | background processes $$\diamond W^{\pm}(\to \tau \nu)$$ two intervals on $\sqrt{\hat{s}}$ are used $$W(W)$$: 30 GeV $<\sqrt{\hat{s}}<$ 150 GeV and $$W(H):$$ 150 GeV $<\sqrt{\hat{s}}<\sqrt{S_{pp}}$ - $\diamond t\bar{t}$ production - $\diamond Wbar{b}$ production | $k_{\perp min} =$ | 10 GeV , | $\sqrt{\hat{s}_{cut}} =$ | $150~\mathrm{GeV}$ | |-------------------|-----------------|--------------------------|--------------------| |-------------------|-----------------|--------------------------|--------------------| | | P_0 | $\sigma(2 \rightarrow 2)$ | $\sigma(2 \to 3)$ | σ_{tot} | |-------------------------|-------|---------------------------|---------------------|-------------------| | H^\pm | 19.4 | 0.85 | 0.73 | 1.0 | | $W^{\pm}(H)$ | 16.0 | 21.1 | 17.3 | 26.0 | | $\overline{W^{\pm}(W)}$ | 11.4 | 1.8×10^4 | 1.6×10^{4} | 2.4×10^4 | | $\overline{tar{t}}$ | | | | 830 | | $Wbar{b}$ | | | | 400 | - signal/background separation - \diamond explicitly one τ -jet, one charged prong $$E_{prong} > 10$$ GeV, $R_{cone} = 0.4,\, r_{ECAL} = 0.15,$ $E_{ECAL}/E_{TOT} > 0.92$ - \diamond $R_H = E_{prong}/E_{\tau} > 0.85$ - \diamond no additional hadronic jets with $P_{\top}(J) > 20 \text{ GeV}$ - \diamond $E_{Tmis}, E_{T\tau} > 50,60 \text{ GeV}$ - $\int \mathcal{L} = 30 \text{ fb}^{-1}$, $M_H = 200 \text{ GeV}$, $R_H > 0.85$ | cut | Bkg | 30 | $\frac{S}{S+B}$ | 50 | $\frac{S}{S+B}$ | |------------|---------------------|------|-----------------|------|-----------------| | R_H | 3.3×10^{6} | 1366 | 0.75 | 3304 | 1.82 | | $E_T > 50$ | 2872 | 505 | 9.2 | 1222 | 22.8 | | $E_T > 60$ | 1693 | 350 | 8.55 | 848 | 20.6 | $$M_{\top} = 2P_{\top \tau} E_{Tmis} (1 - \cos \phi_{\tau E_{Tmis}})$$ • signal and backgrounds have similar shapes W^{\pm} is produced mainly in light quarks annihilation, since $N(u,d)>N(\bar{u},\bar{d})$ $$\sigma(W^+) > \sigma(W^-) \Rightarrow N(\tau^+) > N(\tau^-)$$ H^\pm is produced due to interaction of heavy s,c,b quarks, since $N(Q)=N(\bar{Q})$ $$\sigma(H^+) \approx \sigma(H^-) \Rightarrow N_H(\tau^+) \approx N_H(\tau^-)$$ $$A_{\tau} \equiv \frac{N(\tau^+) - N(\tau^-)}{N(\tau^+) + N(\tau^-)}$$ $$R_H = 0.85, E50 \equiv E_T > 50, E60 \equiv E_T > 60$$ | cut | $A_{\tau}(W)$ | $A_{ au}(H)$, 30 | $A_{ au}(H)$, 50 | |-------|-------------------|-------------------|-------------------| | R_H | 0.11 ± 0.001 | 0.110 ± 0.001 | 0.110 ± 0.001 | | E50 | 0.189 ± 0.019 | 0.167 ± 0.017 | 0.145 ± 0.016 | | E60 | 0.234 ± 0.025 | 0.197 ± 0.023 | 0.163 ± 0.020 | ### **Conclusions** **Charged Higgs can be discovered in the process** gg -> $$tbH^+$$, H^+ -> τv , τ -> $hadrons+v$, t -> qqb in a large part of the parameter space: $$\tan \beta \gtrsim 10 \text{ at } m_{H+} \sim 200 \text{ GeV}$$ $\tan \beta \gtrsim 20 \text{ at } m_{H+} \sim 400 \text{ GeV}$ - Mass determination may be possible with ≤ 2% precision, preliminary result systematics still to be understood - **■** With H⁺ -> tb discovery possible up to ~ 400 GeV, $\tan \beta > 15$ - \Box $\Gamma(\mathbf{H}^+ \to \mathbf{tb}) / \Gamma(\mathbf{H}^+ \to \tau \nu)$ could provide a measurement of $\tan \beta$